
Topper Project∗

Dario Rapisardi

27th February 2006

Abstract

The software and hardware dependencies involved in the Free Software domain
is complex, given the diversity and development models of software developers and
hardware vendors. The Topper Project aims to build an Expert System capable of
gathering the diverse experiences in this field, and help to isolate compatibility
problems.

Contents
1 Introduction 3

2 Topper Internals 4
2.1 Mode of operation . 4
2.2 Data gathering . 4

2.2.1 Topscanner . 5
2.3 Data structure . 6

2.3.1 PCI Bus . 7
2.3.2 USB Bus . 7
2.3.3 Software . 7
2.3.4 Distribution . 8
2.3.5 Kernel modules . 8
2.3.6 IDE Devices . 8
2.3.7 SCSI Devices . 9
2.3.8 Features . 9
2.3.9 CPUs . 11
2.3.10 Example . 12

2.4 Data Cleansing . 13
2.4.1 Mode of operation . 14
2.4.2 Tools . 16

2.5 Data Processing . 16
2.5.1 has_pci_device . 18
2.5.2 has_usb_device . 18
2.5.3 has_software . 18
2.5.4 is_distro . 19
2.5.5 has_kmodule . 19
2.5.6 has_ide_device . 19
2.5.7 has_feature . 19
2.5.8 has_cpu . 19

∗See Appendix A for a reference about the project’s name.

1

CONTENTS CONTENTS

3 Interaction with Topper 19
3.1 Predefined Methods . 20

3.1.1 getAllPci() . 20
3.1.2 getAllUsb() . 20
3.1.3 getAllSoftware() . 20
3.1.4 getAllDistros() . 20
3.1.5 getAllKModules() . 20
3.1.6 getAllFeatures() . 20
3.1.7 getAllIde() . 21
3.1.8 getAllCpus() . 21
3.1.9 getTestFromPci(vid, did, svid, sdid) 21
3.1.10 getTestFromUsb(vid, did) 21
3.1.11 getTestFromSoftware(swname, swversion) 21
3.1.12 getTestFromDistro(dname, dversion) 21
3.1.13 getTestFromKModule(kmod) 21
3.1.14 getTestFromIde(idedevice, idemodel) 21
3.1.15 getTestFromFeature(feat) 21
3.1.16 getTestFromCpu(cpunumber, cpuvendor, cpufamily, cpumodel,

cpustepping) . 22
3.1.17 getPciFromTest(test) 22
3.1.18 getUsbFromTest(test) 22
3.1.19 getSoftwareFromTest(test) 22
3.1.20 getDistroFromTest(test) 22
3.1.21 getKModuleFromTest(test) 22
3.1.22 getIdeFromTest(test) 22
3.1.23 getFeatureFromTest(test) 22
3.1.24 getCpuFromTest(test) 23
3.1.25 getAllFromTest(test) 23

3.2 Free Queries . 23
3.2.1 From Data Structure . 23
3.2.2 From Facts . 24

4 Topper uses 25
4.1 Cherrytopper . 25
4.2 Topper from WebApps . 27
4.3 Topper from Hardware Detection Tools 28

5 Scope 29
5.1 Bottom Scope . 29
5.2 Upper Scope . 29

6 Conclusion 30

7 Machine Learning 31

8 Appendix A - The “Topper” Name 32

9 Appendix B - Data Mining with Machine Learning 33

10 Appendix C - Proof of Concepts 35

11 Changelog 36

2

1 INTRODUCTION

1 Introduction
At this very moment, a lot of information regarding hardware compatibility is being
lost due to the lack of efficient information systems. Topper in itself is not a hardware
detection tool, or a hardware database. It’s an information agent part of a bigger system,
capable of being used by third party tools such as HDT (Hardware Detection Tools) or
WebApps.

3

2 TOPPER INTERNALS

2 Topper Internals

2.1 Mode of operation
We can identify the general mode of operation and the general functions of Topper as
follows:

2.2 Data gathering
The data gathering process basically consists of an actor making some tests and deliv-
ering results. Three big groups of actors can be identified:

Actors
OEMs

End Users
Validation Laboratories

While OEMs and Validation Labs can provide factual, formal results to the tests,
the end users can provide massive, spontaneous amounts of data. Because of this, all
of the data must have the same, structured format, so Topper can properly understand
it.

There are basically three types of data, from a Data Gathering point of view:

Hardware Data: This is information relevating to the devices present in a system, for
example PCI devices.

Software Data: This is information about the software installed in a system, for exam-
ple software packages.

Features: This are the results of the tests in itself. They involve several boolean val-
ues of the type “Working” or “Not Working”. Because of the subjective

4

2.2 Data gathering 2 TOPPER INTERNALS

nature of this, the reasons behind the consideration of a feature “working”
or not is outside the scope of Topper, and must be introduced by the Ac-
tors delivering the data. Nevertheless, errors and inconsistencies could be
properly cleaned in a Machine Learning Process if desired. The Machine
Learning process, however, is currently outside the scope of Topper.1

However, for Topper there’s no difference between a Hardware Data, a Software Data
or a Feature. For Topper, each of this things is a Fact, something present on a sys-
tem. The summary of Facts define a Behaviour. When someone asks Topper about
information, it asks for Behaviours, that will return sets of Facts that might produce
them.

For simple data gathering and input, Topper provides a mechanism served by an
application called Topscanner.

2.2.1 Topscanner

Topscanner is a set of tools aimed for easy data gathering. It’s based on two tools, one
for client side data gathering, and the other one as a server side application aimed for
Training of the data system and data feeding.

The client side of the application collects every aspect of hardware-software related
components present in a system, and creates a file called “topscanner.txt” with all the
facts of the tested system.

The server side is a Web frontend, where the Actor can upload the Facts file and
then follow an on-line wizard about different behaviours (or features) of the system,
based on the uploaded file. This way, End Users can train the Expert System and input
data easily.

Full Facts files with all the information can still be provided the usual way (directly)
to the system. Topscanner is just aimed for interactive training of the system in an easy
way.

1Refer to Appendix B for more details about this topic.

5

2.3 Data structure 2 TOPPER INTERNALS

2.3 Data structure
Topper’ s data structure includes several types of buses and device types (facts) found
in a system. The relationship between these facts can be seen as follows:

This is the Data structure that must be used to input Data in Topper. A Data Gathering
tool (like Topscanner) should output this format.

6

2.3 Data structure 2 TOPPER INTERNALS

2.3.1 PCI Bus

The pci bus information can be entered using the following fact format:

pcidevice(PCICLASS,VID,DID,SVID,SDID).

Being:

PCICLASS: The Class of the device in hexadecimal. Eg: 0x280 = Network Controller.

VID: Vendor ID in hexadecimal. Eg: 0x8086.

DID: Device ID in hexadecimal.

SVID: SubVendor ID in hexadecimal, if any. Otherwise, 0x0000.

SDID: SubDevice ID in hexadecimal, if any. Otherwise, 0x0000.

One entry per pci device must be introduced.

2.3.2 USB Bus

The usb bus information can be introduced using the following fact format:

usbdevice(VID,DID).

Being:

VID: Vendor ID in hexadecimal. For example: 0x8086.

DID: Device ID in hexacecimal.

One entry per usb device attached to the system must be introduced.

2.3.3 Software

Information about the software installed in a system can be introduced using the fol-
lowing fact format:

software(SWNAME,SWVERSION).

Being:

SWNAME: Software name, in string format. The recommended values are: “xorg”,
“xfree86”, “linux”, “alsa”, “hotplug”, “udev”, “libc6”, “gcc”, “sane”, “cups”,
“lpr”, “lprng”, “fglrx”, “nvidia”, “wireless-tools”, “lilo”, “grub”.

SWVERSION: Version of the software installed in string format. For example, “2.6.11-
2”, for a “linux” software installed.

One entry per software installed from the recommended list must be introduced.

7

2.3 Data structure 2 TOPPER INTERNALS

2.3.4 Distribution

Information about the GNU/Linux distribution used in the tested machine can be intro-
duced using the following fact format:

distribution(DNAME,DVERSION).

Being:

DNAME: Distribution name in string format. For example “gnuLinEx”, “guada-
linex”, “debian”, “xandros”, “linspire”.

DVERSION: Version of the distribution used for the test. For example “2004r1” for
gnuLinEx, “2004” for Guadalinex, etc.

Only one fact about the distribution is allowed.

2.3.5 Kernel modules

Information about the kernel modules loaded at test time can be introduced using the
following format:

kmodule(KERNELMODULE).

Being:

KERNELMODULE: The name of the loaded kernel module at test time, without ex-
tension. For example, “id-cdrom”, “snd-hda-intel”, etc.

One fact per kernel module loaded must be introduced.

2.3.6 IDE Devices

Information about the IDE devices installed in the tested system can be informed, if
any, using the following format:

ide(IDEDEVICE,IDEMODEL).

Being:

IDEDEVICE: IDE device name, as recognized by the Linux kernel. For example,
“hda”.

IDEMODEL: IDE device model, as found in the /proc/ide/$IDEDEVICE/model file,
for example “IC25N030ATMR04-0”.

One fact per IDE device present in the system must be introduced, if any.

8

2.3 Data structure 2 TOPPER INTERNALS

2.3.7 SCSI Devices

Information about the SCSI devices installed in the system can be informed, if any,
using the following format:

scsi(SCSIVENDOR,SCSIMODEL,SCSITYPE).

Being:

SCSIVENDOR: SCSI device vendor, as found in /proc/scsi/device_info. Eg: “SONY”.

SCSIMODEL: SCSI device model, as found in /proc/scsi/device_info. Eg: “CD-ROM
CDU-8001”.

SCSITYPE: SCSI device type, in hexadecimal. Eg: 0x4.

One fact per SCSI device present in the system must be introduced, if any.

2.3.8 Features

The collective behaviour of the hardware and software installed in a system defines
different types of features. This behaviours are boolean values, meaning “Working”
or “Not working”. In essence, this are the results of the tests, are outside the scope of
Topper and must be defined by the procedures involved in the testing procedures.

The features can be introduced in using the following format:

feature(FEATURE).

The variable FEATURE can have several values. The following features can be found
in a system:

bluetooth: System has a bluetooth port and is working.

boot: If system boots.

cardbus: System has a cardbus controller, and is working.

digitizer-pen: Digitizer Pen is working.

display: Video is working.

display-dri: X environment is working, with Direct Rendering support.

display-3party: X environment is working, with 3rd party drivers.

display-3d: X environment is working, with OpenGL acceleration.

display-x: X environment is working.

display-xrandr-resize: X environment is working, with XRandR support, and resizing
works.

display-xrandr-rotate: X environment is working, with XRandR support, and rotating
works.

floppy: Floppy drive is working.

9

2.3 Data structure 2 TOPPER INTERNALS

gameport: Game Port (joystick) is working.

hd: Hard disk is working.

ide: System has an IDE controller, working.

ide-dma: System has an IDE controller, and DMA is working.

ide-pata: System has an IDE Parallel ATA controller, working.

ide-sata: System has an IDE Serial ATA controller, working.

ieee1394: System has a iee1394 port and is working.

irda: System has an infrared port, and is working.

keyboard: Keyboard is working.

mass-storage: System has a generic mass storage device, and is working.

modem: System has a modem and is working.

mouse: Mouse is working.

multimedia-audio: System has a sound card, working.

multimedia-audio-hda: System has a sound card, and High Definition Audio is work-
ing.

multimedia-audio-mic: System has a sound card, and micrphone plug is working.

multimedia-audio-midi: System has a sound card, and midi port is working.

multimedia-audio-multichannel: System has a sound card, and multichannel is work-
ing.

multimedia-video: System has a Video 4 Linux (V4L) device attached, and is working.
a

networking-atm: System as an ATM interface, and is working.

networking-eth: System has a wired NIC and is working.

networking-fddi: System has a FDDI interface, and is working.

networking-isdn: System has an ISDN interface, working.

networking-tr: System has a Token Ring interface, and is working.

optical: System has optical drives attached and working.

parport: System has a parallel port and is working.

pcmcia: System has a pcmcia controller, and is working.

printer: System has a printer attached and is working.

raid: System has a RAID controller and is working.

scsi: System has a SCSI controller, working.

10

2.3 Data structure 2 TOPPER INTERNALS

scanner: System has a scanner attached and is working.

serial: System has a serial port and is working.

serial-multiport: System has a multiport serial board, and is working.

usb: System has a working USB 1.1 compatible usb controller.

usb2: System has a working USB 2 compatible usb controller.

usb-storage: System has support for usb-storage devices.

wifi: System has a wireless 802.11x NIC and is working.

wifi-80211ab: System has a 802.11a/b capable, working, wireless interface.

wifi-80211g: System has a 802.11g capable, working, wireless interface.

wifi-adhoc: System has a working wireless NIC, with Ad-Hoc mode support.

wifi-firmware: System has a working wireless 802.11X NIC, with additional firmware
installed.

wifi-managed: System has a working wireless interface, with Infraestructure mode
support.

wifi-master: System has a working wireless interface, with Master mode support.

wifi-monitor: System has a working wireless interface, with Monitor mode support.

wifi-wep: System has a WEP capable and working wireless network interface.

One fact per working feature must be introduced.

2.3.9 CPUs

Information about the CPUs installed in the tested system can be informed using the
following format:

cpu(CPUNUMBER,CPUVENDOR,CPUFAMILY,CPUMODEL,CPUSTEPPING).

Being:

CPUNUMBER: The number of the installed CPU, being 0 the first CPU, 1 the second
one, etc.

CPUVENDOR: The Vendor ID of the CPU as /proc/cpuinfo. For example, GenuineIn-
tel.

CPUFAMILY: CPU Family number. Eg: 6.

CPUMODEL: CPU Model number. Eg: 8.

CPUSTEPPING: CPU Stepping number. Eg: 6.

11

2.3 Data structure 2 TOPPER INTERNALS

2.3.10 Example

An example from a test result can look like this, for a i855 system running juegaLinEx
LINEXTREMIX-1:

pcidevice(0x1180,0x0552,0x0000,0x0000).
pcidevice(0x8086,0x24c7,0x0000,0x0000).
pcidevice(0x8086,0x3582,0x0000,0x0000).
pcidevice(0x8086,0x3582,0x0000,0x0000).
pcidevice(0x8086,0x24ca,0x0000,0x0000).
pcidevice(0x8086,0x24cc,0x0000,0x0000).
pcidevice(0x8086,0x24c6,0x0000,0x0000).
pcidevice(0x8086,0x24c5,0x0000,0x0000).
pcidevice(0x8086,0x4220,0x0000,0x0000).
pcidevice(0x8086,0x24c3,0x0000,0x0000).
pcidevice(0x8086,0x2448,0x0000,0x0000).
pcidevice(0x8086,0x24c2,0x0000,0x0000).
pcidevice(0x8086,0x24c4,0x0000,0x0000).
pcidevice(0x8086,0x3585,0x0000,0x0000).
pcidevice(0x8086,0x3580,0x0000,0x0000).
pcidevice(0x8086,0x3584,0x0000,0x0000).
pcidevice(0x8086,0x103d,0x0000,0x0000).
pcidevice(0x1180,0x0476,0x0000,0x0000).
pcidevice(0x8086,0x24cd,0x0000,0x0000).
pcidevice(0x1180,0x0476,0x0000,0x0000).
usbdevice(0x045e,0x0040).
software(gcc,’4:3.3.5-1’).
software(wireless-tools,’27-1’).
software(grub,’0.95+cvs20040624-12’).
software(linux,’2.6.7’).
software(alsa-base,’1.0.9b-4linex0’).
software(hotplug,’0.0.20040329-16’).
software(xserver-xfree86,’4.3.0.dfsg.1-8’).
software(libsane,’1.0.15-2’).
software(libc6,’2.3.2.ds1-18’).
software(cupsys,’1.1.20final+rc1-10’).
distribution(debian,gnulinex2004r1).
kmodule(i830).
kmodule(snd_mixer_oss).
kmodule(ds).
kmodule(lp).
kmodule(thermal).
kmodule(fan).
kmodule(button).
kmodule(processor).
kmodule(ac).
kmodule(battery).
kmodule(af_packet).
kmodule(arc4).
kmodule(ieee80211_crypt_wep).
kmodule(crc32).
kmodule(p80211).
kmodule(eepro100).
kmodule(ipw2200).
kmodule(firmware_class).
kmodule(ieee80211).
kmodule(ieee80211_crypt).
kmodule(snd_intel8x0m).
kmodule(slamr).
kmodule(pciehp).
kmodule(shpchp).
kmodule(pci_hotplug).
kmodule(usbhid).
kmodule(uhci_hcd).
kmodule(intel_agp).
kmodule(eth1394).
kmodule(mousedev).
kmodule(joydev).
kmodule(tsdev).
kmodule(evdev).
kmodule(e100).
kmodule(mii).
kmodule(ohci1394).

12

2.4 Data Cleansing 2 TOPPER INTERNALS

kmodule(ieee1394).
kmodule(yenta_socket).
kmodule(pcmcia_core).
kmodule(snd_intel8x0).
kmodule(snd_ac97_codec).
kmodule(snd_pcm).
kmodule(snd_timer).
kmodule(snd).
kmodule(soundcore).
kmodule(snd_page_alloc).
kmodule(ehci_hcd).
kmodule(usbcore).
kmodule(supermount).
kmodule(dm_mod).
kmodule(ide_cd).
kmodule(cdrom).
kmodule(parport_pc).
kmodule(parport).
kmodule(rtc).
kmodule(xfs).
kmodule(jfs).
kmodule(reiserfs).
kmodule(isofs).
kmodule(ext2).
kmodule(ext3).
kmodule(jbd).
kmodule(mbcache).
kmodule(ide_disk).
kmodule(ide_generic).
kmodule(piix).
kmodule(ide_core).
kmodule(unix).
kmodule(sata_via).
kmodule(sata_sx4).
kmodule(sata_svw).
kmodule(sata_sis).
kmodule(sata_sil).
kmodule(sata_promise).
kmodule(ata_piix).
kmodule(libata).
kmodule(scsi_mod).
ide(hdc,dv-w28e).
ide(hda,ic25n030atmr04-0).
cpu(’0’,’GenuineIntel’,’6’,’13’,’6’).
feature(audio).
feature(hd).
feature(boot).
feature(video).
feature(mouse).
feature(usb-storage).
feature(iee1394).
feature(printer).
feature(wi-fi).

2.4 Data Cleansing
Topper sources of data can be wide and diverse. For that reason, a good mechanism
to clean the data introduced to the system must be applied. Basically, this mechanism
will involve several steps, like looking for dirty data, duplicates, incomplete, redundant
or irrelevant. As indicated in the Mode of operation chart, Actors introducing data can
be diverse, such as OEMs making tests, Validations Labs and End Users. Classifying
this sources of information by quality, the following levels can be defined:

• Highest quality: The validation tests made by Intel and/or validation/certification
centers.

• Good quality: The information about hardware present in the kernel. This kind
of information is not very useful in terms of Topper point of view, since it lacks of

13

2.4 Data Cleansing 2 TOPPER INTERNALS

different attributes, such as supported software versions, dependencies between
user-space and kernel-space packages (eg. udev, initramfs), and dependencies
involved when some of the kernel modules are provided as separate packages.

• Poor quality: The data introduced by end users, meaning by end users Commu-
nity and OEMs.

Given that Topper has to deal with all this kind of sources, the highest level of Data
Cleansing should be applied. The good opposite about this scenario, is that big amounts
of information can be handled with certain reliability.

For that purpose, six steps are involved:

• Syntax errors cleaning.

• Cleaning of empty attributes.

• Removing attributes with ilogical values.

• Elimination of non relevant attributes.

• Testing and evaluation.

• Selection of Data Views by attributes (attribute=X), creating subsets of data clas-
sificated by features.

2.4.1 Mode of operation

All of the tests must be done off-line. This means, in a batch process, applied to all the
data collected every certain time. Since Topper’s philosophy is to treat all data as equal,
the problems involved with data testing and manipulation is similar to those found in
Data Mining and Machine Learning situations. In machine learning, one should not
learn and test classifiers on the same data set. For that reason, the data should be
splitted and used some of them for training, and the rest for testing. The good thing
about this mechanism is that once that some data introduced by the Highest Quality
sources (eg. Intel), it can be used to train the system and test the other set of data.

A description of the steps involved in the Data Cleansing process follows.

Syntax error cleaning

This process just parses the input tests and look for syntax errors that would conflict
with the normal operation of the testing suites.

Cleaning of empty attributes

Here’s a snippet of an example about how to remove tests with missing values (a little
bit reduced for space purposes) with Orange:

import orange
data = orange.ExampleTable("topscanner.txt")
boot, hd, ide, pci, cpu = data.domain.variables
data2 = orange.Preprocessor_dropMissing(data)

14

2.4 Data Cleansing 2 TOPPER INTERNALS

Removing attributes with ilogical values

As the previous example, now let’s see how to remove tests with ilogical values with
Orange:

import orange
data = orange.ExampleTable("topscanner.txt")
boot, hd, ide, pci, cpu = data.domain.variables
pp = orange.Preprocessor_drop()
pp.values[boot] = "no"
data2 = pp(data)

Elimination of non relevant attributes

Most of the data collected by Actors might not be of interest to the application level.
There’s a way to reduce the size of the data base, eliminating non relevant attributes.
This is done eliminating attributes recursively using Relief measure, until the estimate
relevants of all attributes is beyond certain threshold. In the following example let’s
see a margin of marg=0.01 as an example:

import orange, orngFSS
data = orange.ExampleTable(“topscanner.txt”)
marg = 0.0.1
ndata = orngFSS.filterRelief(data, margin=marg)

Testing and Evaluation

As said, one should not learn and test classifiers from the same data set. One could split
the data in half, or use some of the highest quality data to train the system and cross
validate against the new data. In the next example, let’s see this scenario, applying a
Bayes learner and a Classification Tree learner.

import orange, orgnTree
train_data = orange.ExampleTable(“factslist.pro”)
test_data = orange.ExampleTable(“topscanner.txt”)
bayes = orange.BayesLearner(train_data)
tree = orngTree.TreeLearner(train_data)
bayes.name = “bayes”
tree.name = “tree”
classifiers = [bayer, tree]
#Compute accuracies
correct = [0,0]*len(classifiers)
for ex in test_data:

for i in range(len(classifiers)):
if classifiers[i](ex) == ex.getclass():

correct[i] += 1
for i in range(len(correct)):

correct[i] = correct[i]/len(test_data)
#Print accuracies
for i in range(len(classifiers)):

print classifiers[i].name, acc[i]

Unfortunately, a good data set is needed to determine the efficiency of the Learners.

15

2.5 Data Processing 2 TOPPER INTERNALS

Selection of Data Views by attributes

The selection of Data Views is useful when large amounts of data are being used for
several and different purposes. For example, from the same data set some application
might be interested in seeing the relationship between Chipset families and Software
packages, while other user might be interested in the relationship between Wi-Fi cards
and software packages. In both cases, information such as loaded kernel modules and
scsi drives can be discarded.

This can be easily done with Orange and selecting data tests by attributes. In the
example, let’s see how to make a subset from tests involvinf wi-fi, software and distri-
bution:

import orange
data = orange.ExampleTable(“topscanner.txt”)
newData2 = data.select([’wi-fi’, ’software’, ’distribution’])

This allows the generation of smaller groups, allowing a faster processing of data at the
application level.

2.4.2 Tools

Topper uses the Orange2 data mining software as a backend for data cleansing pur-
poses. Orange is a data mining software with a range of preprocessing, modelling and
data exploration techniques. This components can be accesed through Python scripts.

2.5 Data Processing
Collected data might be introduced to Topper in the form of facts, with the format seen
in the previous example. Once introduced, Topper assigns it a Unique Test Identifier
and builds the relationships between the Data. The Unique Test Identifier it’s just a
unique string assigned by the Topper engine.

To introduce the data, the parser python module can be used, to input the data in a
plain test format like seen in the previous section, like this:

import parser
factslists = parser.Parser()

Then, we can pass the plain text file to the Parser directly:

file = “topscanner.txt”
factslists.addTest(file)

After this, the Parser will generate a new Unique Test Identifier and add the Test to the
Database.

Once processed by Topper, the previous example will look like this inside Topper’s
database:

has_tested(’test10571’).
has_pci_device(’test10571’, pcidevice(’0x1180’,’0x0552’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x8086’,’0x24c7’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x8086’,’0x3582’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x8086’,’0x3582’,’0x0000’,’0x0000’)).

2http://www.ailab.si/orange

16

2.5 Data Processing 2 TOPPER INTERNALS

has_pci_device(’test10571’, pcidevice(’0x8086’,’0x24ca’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x8086’,’0x24cc’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x8086’,’0x24c6’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x8086’,’0x24c5’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x8086’,’0x4220’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x8086’,’0x24c3’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x8086’,’0x2448’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x8086’,’0x24c2’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x8086’,’0x24c4’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x8086’,’0x3585’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x8086’,’0x3580’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x8086’,’0x3584’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x8086’,’0x103d’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x1180’,’0x0476’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x8086’,’0x24cd’,’0x0000’,’0x0000’)).
has_pci_device(’test10571’, pcidevice(’0x1180’,’0x0476’,’0x0000’,’0x0000’)).
has_usb_device(’test10571’, usbdevice(’0x045e’,’0x0040’)).
has_software(’test10571’ ,software(’gcc’,’4:3.3.5-1’)).
has_software(’test10571’ ,software(’wireless-tools’,’27-1’)).
has_software(’test10571’ ,software(’grub’,’0.95+cvs20040624-12’)).
has_software(’test10571’ ,software(’linux’,’2.6.7’)).
has_software(’test10571’ ,software(’alsa-base’,’1.0.9b-4linex0’)).
has_software(’test10571’ ,software(’hotplug’,’0.0.20040329-16’)).
has_software(’test10571’ ,software(’xserver-xfree86’,’4.3.0.dfsg.1-8’)).
has_software(’test10571’ ,software(’libsane’,’1.0.15-2’)).
has_software(’test10571’ ,software(’libc6’,’2.3.2.ds1-18’)).
has_software(’test10571’ ,software(’cupsys’,’1.1.20final+rc1-10’)).
is_distro(’test10571’, distribution(’debian’,’gnulinex2004r1’)).
has_kmodule(’test10571’, kmodule(’snd_pcm_oss’)).
has_kmodule(’test10571’, kmodule(’i830’)).
has_kmodule(’test10571’, kmodule(’snd_mixer_oss’)).
has_kmodule(’test10571’, kmodule(’ds’)).
has_kmodule(’test10571’, kmodule(’lp’)).
has_kmodule(’test10571’, kmodule(’thermal’)).
has_kmodule(’test10571’, kmodule(’fan’)).
has_kmodule(’test10571’, kmodule(’button’)).
has_kmodule(’test10571’, kmodule(’processor’)).
has_kmodule(’test10571’, kmodule(’ac’)).
has_kmodule(’test10571’, kmodule(’battery’)).
has_kmodule(’test10571’, kmodule(’af_packet’)).
has_kmodule(’test10571’, kmodule(’arc4’)).
has_kmodule(’test10571’, kmodule(’ieee80211_crypt_wep’)).
has_kmodule(’test10571’, kmodule(’crc32’)).
has_kmodule(’test10571’, kmodule(’p80211’)).
has_kmodule(’test10571’, kmodule(’eepro100’)).
has_kmodule(’test10571’, kmodule(’ipw2200’)).
has_kmodule(’test10571’, kmodule(’firmware_class’)).
has_kmodule(’test10571’, kmodule(’ieee80211’)).
has_kmodule(’test10571’, kmodule(’ieee80211_crypt’)).
has_kmodule(’test10571’, kmodule(’snd_intel8x0m’)).
has_kmodule(’test10571’, kmodule(’slamr’)).
has_kmodule(’test10571’, kmodule(’pciehp’)).
has_kmodule(’test10571’, kmodule(’shpchp’)).
has_kmodule(’test10571’, kmodule(’pci_hotplug’)).
has_kmodule(’test10571’, kmodule(’usbhid’)).
has_kmodule(’test10571’, kmodule(’uhci_hcd’)).
has_kmodule(’test10571’, kmodule(’intel_agp’)).
has_kmodule(’test10571’, kmodule(’eth1394’)).
has_kmodule(’test10571’, kmodule(’mousedev’)).
has_kmodule(’test10571’, kmodule(’joydev’)).
has_kmodule(’test10571’, kmodule(’tsdev’)).
has_kmodule(’test10571’, kmodule(’evdev’)).
has_kmodule(’test10571’, kmodule(’e100’)).
has_kmodule(’test10571’, kmodule(’mii’)).
has_kmodule(’test10571’, kmodule(’ohci1394’)).
has_kmodule(’test10571’, kmodule(’ieee1394’)).
has_kmodule(’test10571’, kmodule(’yenta_socket’)).
has_kmodule(’test10571’, kmodule(’pcmcia_core’)).
has_kmodule(’test10571’, kmodule(’snd_intel8x0’)).
has_kmodule(’test10571’, kmodule(’snd_ac97_codec’)).
has_kmodule(’test10571’, kmodule(’snd_pcm’)).
has_kmodule(’test10571’, kmodule(’snd_timer’)).
has_kmodule(’test10571’, kmodule(’snd’)).
has_kmodule(’test10571’, kmodule(’soundcore’)).

17

2.5 Data Processing 2 TOPPER INTERNALS

has_kmodule(’test10571’, kmodule(’snd_page_alloc’)).
has_kmodule(’test10571’, kmodule(’ehci_hcd’)).
has_kmodule(’test10571’, kmodule(’usbcore’)).
has_kmodule(’test10571’, kmodule(’supermount’)).
has_kmodule(’test10571’, kmodule(’dm_mod’)).
has_kmodule(’test10571’, kmodule(’ide_cd’)).
has_kmodule(’test10571’, kmodule(’cdrom’)).
has_kmodule(’test10571’, kmodule(’parport_pc’)).
has_kmodule(’test10571’, kmodule(’parport’)).
has_kmodule(’test10571’, kmodule(’rtc’)).
has_kmodule(’test10571’, kmodule(’xfs’)).
has_kmodule(’test10571’, kmodule(’jfs’)).
has_kmodule(’test10571’, kmodule(’reiserfs’)).
has_kmodule(’test10571’, kmodule(’isofs’)).
has_kmodule(’test10571’, kmodule(’ext2’)).
has_kmodule(’test10571’, kmodule(’ext3’)).
has_kmodule(’test10571’, kmodule(’jbd’)).
has_kmodule(’test10571’, kmodule(’mbcache’)).
has_kmodule(’test10571’, kmodule(’ide_disk’)).
has_kmodule(’test10571’, kmodule(’ide_generic’)).
has_kmodule(’test10571’, kmodule(’piix’)).
has_kmodule(’test10571’, kmodule(’ide_core’)).
has_kmodule(’test10571’, kmodule(’unix’)).
has_kmodule(’test10571’, kmodule(’sata_via’)).
has_kmodule(’test10571’, kmodule(’sata_sx4’)).
has_kmodule(’test10571’, kmodule(’sata_svw’)).
has_kmodule(’test10571’, kmodule(’sata_sis’)).
has_kmodule(’test10571’, kmodule(’sata_sil’)).
has_kmodule(’test10571’, kmodule(’sata_promise’)).
has_kmodule(’test10571’, kmodule(’ata_piix’)).
has_kmodule(’test10571’, kmodule(’libata’)).
has_kmodule(’test10571’, kmodule(’scsi_mod’)).
has_ide_device(’test10571’, ide(’hdc’,’dv-w28e’)).
has_ide_device(’test10571’, ide(’hda’,’ic25n030atmr04-0’)).
has_cpu(’test10571’, cpu(’0’,’GenuineIntel’,’6’,’13’,’6’)).
has_feature(’test10571’, feature(’boot’)).
has_feature(’test10571’, feature(’hd’)).
has_feature(’test10571’, feature(’audio’)).
has_feature(’test10571’, feature(’video’)).
has_feature(’test10571’, feature(’accel’)).
has_feature(’test10571’, feature(’mouse’)).
has_feature(’test10571’, feature(’keyboard’)).

As we can see in the example, it’s assumed that a set of facts is what defines the global
behaviour, with no particular precedence.

Let’s take a look at each of this rules:

2.5.1 has_pci_device

The has_pci_device(TEST, PCI) rule accepts a TEST and a PCI elements, being PCI
of the form: pcidevice(PCICLASS, VID, DID, SVID, SDID):

has_pci_device(’test_identifier’, pcidevice(’pciclass’,’vid’,’did’,’svid’,’sdid’)).

2.5.2 has_usb_device

The has_usb_device(TEST, USB) rule accepts a TEST and a USB elements, being USB
of the form: usbdevice(VID, DID):

has_usb_device(’test_identifier’, usbdevice(’vid’,’did’)).

2.5.3 has_software

The has_software(TEST, SOFTWARE) rule accepts a TEST and a SOFTWARE ele-
ments, being SOFTWARE of the form: software(SWNAME, SWVERSION):

18

3 INTERACTION WITH TOPPER

has_software(’test_identifier’, software(’swname’,’swversion’)).

2.5.4 is_distro

The is_distro(TEST, DISTRIBUTION) rule accepts a TEST and a DISTRIBUTION ele-
ments, being DISTRIBUTION of the form: distribution(DNAME, DVERSION):

is_distro(’test_identifier’, distribution(’dname’,’dversion’)).

2.5.5 has_kmodule

The has_kmodule(TEST, KERNELMODULE) rule accepts a TEST and a KERNELMOD-
ULE elements, being KERNELMODULE of the form: kmodule(KERNELMODULE):

has_kmodule(’test_identifier’, kmodule(’kernelmodule’)).

2.5.6 has_ide_device

The has_ide_device(TEST, IDE) rule accepts a TEST and a IDE elements, being IDE
of the form: ide(IDEDEVICE, IDEMODEL):

has_ide_device(’test_identifier’, ide(’idedevice’,’idemodel’)).

2.5.7 has_feature

The has_feature(TEST, FEATURE) rule accepts a TEST and a FEATURE elements,
being FEATURE of the form: feature(FEATURE):

has_feature(’test_identifier’, feature(’feature’)).

2.5.8 has_cpu

The has_cpu(TEST, CPU) rule accepts a TEST and a CPU elements, being CPU of the
form: cpu(CPUNUMBER, CPUVENDOR, CPUFAMILY, CPUMODEL, CPUSTEP-
PING):

has_cpu(’test_identifier’, cpu(’cpunumber’, ’cpuvendor’,
’cpufamily’, ’cpumodel’, ’cpustepping’)).

3 Interaction with Topper
As already noticed, Topper facts are written in Prolog. Besides Prolog’s ability to
create powerful expert systems, this language offers bindings for the most popular
programming languages. As an intermediate tool aimed to be used as a helper for
others, this seemed very appropiate.

While Topper facts are in Prolog, the main engine is written in Python, and can be
accessed as a module to use it. Just need to import the proper module:

from topper import

19

3.1 Predefined Methods 3 INTERACTION WITH TOPPER

Then, to make an instance of it, the main file with the facts database can be passed to
the class. By default it uses “factslist.pro”:

topper = Topper()
topper.reloadFacts()

The reloadFacts() method makes topper re-read the facts file and load them in memory.
Now the engine is running.

Topper has several predefined methods to get information, and one method for Free
Queries, as described below:

3.1 Predefined Methods
The following are the predefined methods in Topper, to provide easy access to common
data.

3.1.1 getAllPci()

The topper.getAllPci() method returns all the PCI devices Topper knows about, in a
list. Each element of the list contains a tuple with five elements: PCICLASS, VID,
DID, SVID and SDID.

3.1.2 getAllUsb()

The topper.getAllUsb() method returns all the USB devices Topper knows about, in a
list. Each element of the list contains a tuple with two elements: VID and DID.

3.1.3 getAllSoftware()

The topper.getAllSoftware() method returns all the Software packages Topper knows
about, in a list. Each element of the list contains a tuple with two elements: SWNAME
and SWVERSION.

3.1.4 getAllDistros()

The topper.getAllDistros() method returns all the Distributions Topper knows about,
in a list. Each element of the list contains a tuple with two elements: DNAME and
DVERSION.

3.1.5 getAllKModules()

The topper.getAllKModules() method returns all the Kernel Modules Topper knows
about, in a list. Each element of the list contains a KERNELMODULE element (a
module name).

3.1.6 getAllFeatures()

The topper.getAllFeatures() method returns all the Features Topper knows about, in a
list. Each element of the list contains a FEATURE element (a feature name).

20

3.1 Predefined Methods 3 INTERACTION WITH TOPPER

3.1.7 getAllIde()

The topper.getAllIde() method returns all the IDE Devices Topper knows about, in a
list. Each element of the list contains a tuple with two elements, IDEDEVICE and
IDEMODEL.

3.1.8 getAllCpus()

The topper.getAllCpu() method returns all the CPUs Topper knows about, in a list. Each
element of the list contains a tuple with five elements, CPUNUMBER, CPUVENDOR,
CPUFAMILY, CPUMODEL and CPUSTEPPING.

3.1.9 getTestFromPci(vid, did, svid, sdid)

The topper.getTestFromPci(vid = “0x0000”, did = “0x0000”, svid = “0x0000”, sdid
= “0x0000”) method returns all the Tests that match with the given PCI device. The
return format is a list with the Tests names (tests unique identifiers).

3.1.10 getTestFromUsb(vid, did)

The topper.getTestFromUsb(vid = “0x0000”, did = “0x0000”) method returns all the
Tests that match with the given USB device. The return format is a list with the Tests
names (tests unique identifiers).

3.1.11 getTestFromSoftware(swname, swversion)

The topper.getTestFromSoftware(swname = “”, swversion = “”) method returns all the
Tests that match with the given software package. The return format is a list with the
Tests names (tests unique identifiers).

3.1.12 getTestFromDistro(dname, dversion)

The topper.getTestFromDistro(dname = “”, dversion = “”) method returns all the Tests
that match with the given distribution name and version. The return format is a list with
the Tests names (tests unique identifiers).

3.1.13 getTestFromKModule(kmod)

The topper.getTestFromKModule(kmod = “”) method returns all the Tests that match
with the given kernel module name. The return format is a list with the Tests names
(tests unique identifiers).

3.1.14 getTestFromIde(idedevice, idemodel)

The topper.getTestFromIde(idedevice = “”, idemodel = “”) method returns all the
Tests that match with the given IDE device and model. The return format is a list
with the Tests names (tests unique identifiers).

3.1.15 getTestFromFeature(feat)

The topper.getTestFromFeature(feat = “”) method returns all the Tests that match the
given feature. The return format is a list with the Tests names (tests unique identifiers).

21

3.1 Predefined Methods 3 INTERACTION WITH TOPPER

3.1.16 getTestFromCpu(cpunumber, cpuvendor, cpufamily, cpumodel, cpustep-
ping)

The topper.getTestFromCpu(cpunumber = “”, cpuvendor = “”, cpufamily = “”, cpumodel
= “”, cpustepping = “”) method returns all the Tests that match the given CPU. The
return format is a list with the Test names (tests unique identifiers).

3.1.17 getPciFromTest(test)

The topper.getPciFromTest(test = “”) method returns all the PCI devices that match
the given Test unique identifier, in a list. Each element of the list is a tuple with five
elements: PCICLASS, VID, DID, SVID and SDID.

3.1.18 getUsbFromTest(test)

The topper.getUsbFromTest(test = “”) method returns all the USB devices that match
the given Test unique identifier, in a list. Each element of the list is a tuple with two
elements: VID and DID.

3.1.19 getSoftwareFromTest(test)

The topper.getSoftwareFromTest(test = “”) method returns all the Software packages
that match the given Test unique identifier, in a list. Each element of the list is a tuple
with two elements: SWNAME and SWVERSION.

3.1.20 getDistroFromTest(test)

The topper.getDistroFromTest(test = “”) method returns all the Distributions that match
the given Test unique identifier, in a list. Each element of the list is a tuple with two
elements: DNAME and DVERSION.

3.1.21 getKModuleFromTest(test)

The topper.getKModuleFromTest(test = “”) method returns all the Kernel Modules
that match the given Test unique identifier, in a list. Each element of the list contains a
KERNELMODULE element.

3.1.22 getIdeFromTest(test)

The topper.getIdeFroMTest(test = “”) method returns all the Ide Devices that match
the given Test unique identifier, in a list. Each element of the list contains a tuple with
two elements: IDEDEVICE and IDEMODEL.

3.1.23 getFeatureFromTest(test)

The topper.getFeatureFromTest(test = “”) method returns all the Features that match
the given Test unique identifier, in a list. Each element of the list contains a FEATURE
element.

22

3.2 Free Queries 3 INTERACTION WITH TOPPER

3.1.24 getCpuFromTest(test)

The topper.getCpuFromTest(test = “”) method returns all the CPUs that match the
given Test unique identifier, in a list. Each element of the list is a tuple with five el-
ements: CPUNUMBER, CPUVENDOR, CPUFAMILY, CPUMODEL and CPUSTEP-
PING.

3.1.25 getAllFromTest(test)

The topper.getAllFromTest(test = “”) method returns every data the Test has, in a Dic-
tionary. The keys of the dictionary are:

pcidevice has a list with tuples with the PCI devices, as returned by getPciFromTest(test).

usbdevice has a list with tuples with the USB devices, as returned by getUsbFromTest(test).

software has a list with tuples with the Software packages, as returned by getSoft-
wareFromTest(test).

distribution has a list with tuples with the Distributions, as returned by getDistroFromTest(test).

kmodule has a list with KERNELMODULE elements, as returned by getKModule-
FromTest(test).

ide has a list with tuples with the Ide devices, as returned by getIdeFromTest(test).

feature has a list with FEATURE elements, as returned by getFeatureFromTest(test).

cpu has a list with tuples with the CPU elements, as returned by getCpuFromTest(test).

3.2 Free Queries
Topper also has methods that allows to make free queries to the Prolog engine, either
from Facts or from Rules.

3.2.1 From Data Structure

This method is topper.query(args), being args a list with the facts to be queried with
the AND operator. Each type of facts is explained in the Data Structure Section. The
facts not mentioned are treated as Don’t Care variables.

For example:

import topper
topper = Topper()
topper.reloadFacts()
args = [

"pcidevice(’0x1180’,’0x0552’,’0x0000’,’0x0000’)",
"feature(’mouse’)",
"usbdevice(’0x045e’,’0x0040’)",
"software(’gcc’,’4:3.3.5-1’)",
"software(’linux’,’2.6.7’)",
"distribution(’debian’,’gnulinex2004r1’)",
"kmodule(’snd_pcm_oss’)",
"ide(’hdc’,’dv-w28e’)",
"feature(’keyboard’)"
]

topper.query(args)

This will return a list with the matching TESTS for the given facts.

23

3.2 Free Queries 3 INTERACTION WITH TOPPER

3.2.2 From Facts

To make direct questions in the form of Facts, the pylogquery.run(rules) method is
required, being rules a chunk of rules to be queried to the Prolog engine directly. py-
logquery will run each rule inside of a “run(TEST):-” program. Each type of rule is
explained in the Data Processing Section. For example:

import pylogquery
rules = “””
has_tested(TEST),
has_pci_device(TEST, pcidevice(’vid’,’did’,’svid’,’sdid’)),
has_usb_device(TEST, usbdevice(’vid’,’did’)),
has_feature(TEST, feature(’feature’),
has_software(TEST, software(’software’),
is_distro(TEST, distribution(’dname’,’dversion’),
has_kmodule(TEST, kmodule(’kernelmodule’),
has_ide_device(TEST, ide(’idedevice’,’idemodel’).
“””
pylogquery.run(rules)

This will return a lists with the matching TESTS. Right now, only run() is understood
by pylogquery.

24

4 TOPPER USES

4 Topper uses
Topper has several possible uses. Please refer to the Proof of Concepts Appendix to
see one way to gather, feed and consult with Topper from a python+GTK application.
Another possible uses are from WebApps, or directly from HDT (Hardware Detection
Tools).

4.1 Cherrytopper
Disclaimer: Cherrytopper is a work in progress. All features and screenshots here are
changing periodically.

Cherrytopper is a Web Interface to the Topscanner and Topper libraries. It has
between its main goals:

• Provide a simple interface to Topscanner, asking feature questions based on the
hardware found by the user.

• Provide a Query mechanism to access the Topper libraries and hardware database.

• Provide a quick search engine to look thru the Tests database, and look for Top-
per’s information regarding those tests.

The main screen of Cherrytopper, including the above functionalities, could look like
this:

In
the above screen, three basic features are displayed. Simple enough, the options are
"feeding", "expert query" or a simple search field. Pre-defined queries (like "sound card
queries") could be defined (they would be just a simplification of the expert query).

25

4.1 Cherrytopper 4 TOPPER USES

The above image shows the feed screen. Pretty rough right now. The user down-
loads the scanner, and uploads the results, which are processed on-line and a question-
naire is automatically generated on the fly, as shown in next figure:

After the user completes the questionnaire, the information is queued up for quality
Testing, and then it’s merged into Topper’s database.

Next figure show the Expert Query menu, where the user can select any kind of
constrains to narrow the search. In the example, the user don’t care about PCI de-
vices, Distribution, etc., but wants information about successful tests on Intel 15-2-9
processors, with some specific software version:

26

4.2 Topper from WebApps 4 TOPPER USES

The
results of the Query returns a set of Tests (at least in Expert Mode). This are the tests
that succesfully satisfies the constrains entered by the user. Each test can be seen inside
to get further details, like all the testing environment, best knowm method document,
user’s comments, etc.

4.2 Topper from WebApps
Topper can be used from Web Applications to offer technical support to end users. For
example, a rule like:

from topper import *
topper = Topper()
topper.reloadFacts()
args = [

“feature(’sound’)”,
“distribution(’Debian’,’3.1’)”

27

4.3 Topper from Hardware Detection Tools 4 TOPPER USES

]
topper.query(args)

Should answer the hardware and software combinations that allows to have sound sup-
port in the given distribution.

Since the rules will depend of the scope of the application, they won’ t be detailed
here. Some of them can be already predefined in Topper, while the others in the appli-
cation itself.

4.3 Topper from Hardware Detection Tools
Most of the Hardware Detection Tools (HDT) available in Linux distributions consist
of a static hardware database included with the distribution, and some software loading
kernel modules or configuring the system according the the hardware found, in a per-
component basis.

Debian’s HDT, discover, for example, delivers static hardware information in XML
form in the discover-data package, and uses a shell script, discover-modprobe, to load
kernel modules according to the pair of Vendor ID/Product ID hardware found in the
system. Since discover is only a way of retrieving XML data, it can be extended, for
example with a discover-apt 3 application. Even while discover provides a way to
extend the hardware database4, it doesn’t have a track of the behaviour of different
hardware combinations. This results in the necessity of human interaction to provide
sensible defaults for certain hardware5, like blacklisting.

Concluding, since discover knows how to install software, how to load kernel mod-
ules, and what hardware is in the system, it can perfectly ask Topper for clever infor-
mation regarding this subjects.

3

discover-apt is currently deployed and used in the juegaLinEx distribution, with the discover-linex-tools
package, in order to install non-Debian software packages, like graphic drivers.

4For example, the linux-sound-base package provides an extension of the sound card database.
5For example with the blacklisting of the i8xx_tco kernel module, which caused hangups in some plat-

forms.

28

5 SCOPE

5 Scope
Even when Topper in itself is not a solution for the complex dependencies between
software and hardware components, it can help in diverse areas, like User Support,
Software Installation and Software Configuration. It can even help in Software devel-
opment, helping the developer to identify the conflictive pieces of software that deny a
proper system behaviour.

Topper does not provide a tool or a process. Topper provides Information given a
set of Data.

5.1 Bottom Scope
At the bottom, the scope of Topper begins with the processing of Facts previously
gathered by some other tool, or with Topscanner. Refer to the Data Structure or Data
Gathering Sections for more information on this.

If not using Topscanner, this Facts must be introduced in plain text format to the
parser class:

import parser
factslists = parser.Parser()

Then, we can pass the plain text file to the Parser directly:

file = “topscanner.txt”
factslists.addTest(file)

After this, the Parser will generate a new Unique Test Identifier and add the Test to the
Database.

It’s not Topper’s duty to collect this data. However, see the Proofs of Concept
Appendix for examples, or Data Gathering Section about Topscanner.

5.2 Upper Scope
The Upper Scope of Topper is defined by the delivery of the requested information, via
the Predefined Queries or the Free Queries, as shown in the Interaction with Topper
Section above.

It’s not Topper’s duty to provide and end user tool to consult the Data, even when
it can be done in several ways. See the Proof of Concepts Appendix for examples.

29

6 CONCLUSION

6 Conclusion
Given the complexity of today’s software and hardware dependencies in the Free Soft-
ware environment, and the complexity of the actors involved in development, to offer
and use an active hardware and software dependency tool is quite difficult. For this
reason, a passive approach is used, in the hope of a better understanding of the main
causes of today’s situation.

30

7 MACHINE LEARNING

7 Machine Learning
One of the possibilities in this subject is to implement a Machine Learning mechanism,
to let the system identify which combinations of hardware, software and features would
actually work, without the need of human interaction.

Refer to Appendix B to see an example.

31

8 APPENDIX A - THE “TOPPER” NAME

8 Appendix A - The “Topper” Name
Topper is the name of one of the minor characters in the Dilbert strip by Scott Adams,
who made his first appearance in 2001. He’s well known for always having a comment
that “tops” anything that anyone always made. Since the Topper Project is meant to
deliver an expert system aimed to answer questions regarding hardware and software
dependecies issues, it seemed to be the right name.

Topper can be seen in January 2001 Dilbert strips, appearing again in August 2005.

32

9 APPENDIX B - DATA MINING WITH MACHINE LEARNING

9 Appendix B - Data Mining with Machine Learning
In this section we will see an example using the Open Source Machine Learning soft-
ware Weka6. For this purpose, a false and small data set is provided for experiment
purposes, as follows:

%
@relation topper
@attribute kernel { 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.6.6, 2.6.7, 2.6.8, 2.6.9,

2.6.10, 2.6.11, 2.6.12}
@attribute xorg { 6.8, 6.9, 7 }
@attribute suspend-to-ram { suspends-to-ram, not-suspends-to-ram }
@attribute sound { sound-works, not-sound-works }
@attribute video { video-works, not-video-works }
@attribute wifi { wifi-none, ipw2100, ipw2200 }
@attribute wireless-capabilities { wifi-works, not-wifi-works }
@attribute host-bridge { 0x3580, 0x3581 }
@attribute uhci-controller { 0x24c2, 0x24c4 }
@data
2.6.1,6.9,suspends-to-ram,not-sound-works,video-works, ipw2200,not-wifi-works, 0x3580, 0x24c4
2.6.4,6.8,not-suspends-to-ram,sound-works,video-works, ipw2100,wifi-works, 0x3581, 0x24c4
2.6.3,6.9,suspends-to-ram,sound-works,not-video-works, wifi-none,not-wifi-works, 0x3581, 0x24c4
2.6.2,7,not-suspends-to-ram,not-sound-works,video-works, ipw2100,not-wifi-works, 0x3580, 0x24c2
2.6.6,7,suspends-to-ram,sound-works,not-video-works, ipw2200,not-wifi-works, 0x3581, 0x24c2
2.6.2,6.8,not-suspends-to-ram,not-sound-works,video-works, ipw2100,wifi-works, 0x3580, 0x24c2
2.6.4,6.8,suspends-to-ram,not-sound-works,not-video-works, wifi-none,not-wifi-works, 0x3580, 0x24c2
2.6.4,6.9,not-suspends-to-ram,sound-works,not-video-works, ipw2100,wifi-works, 0x3581, 0x24c4
2.6.6,6.9,not-suspends-to-ram,sound-works,video-works, ipw2100,wifi-works, 0x3581, 0x24c4
2.6.6,7,suspends-to-ram,not-sound-works,video-works, ipw2100,not-wifi-works, 0x3580, 0x24c2
2.6.9,7,not-suspends-to-ram,sound-works,video-works, ipw2200,not-wifi-works, 0x3580, 0x24c2
%
%
%

As seen in the example, there is information regarding software as kernel versions and
Xorg versions, regarding hardware as Wi-Fi, USB controllers and Host Bridge chipsets,
and features like “sound works” or “suspend to ram works”.

Once the data is collected, the system can analyze it using diverse tree algorithms.
In this example, the j437 tree is used to analyze the relationship between Wi-Fi chipsets,
kernel versions and sound capabilities from the given tests.

6http://www.cs.waikato.ac.nz/ml/weka/
7Chunsheng Li, Li Liu, and Qingfeng Song, A Practical Framework for Agent-based Hybrid Intelligent

Systems, Asian Journal of Information Technology, 3 (2): 107-114, 2004, Grace Publications Network.

33

9 APPENDIX B - DATA MINING WITH MACHINE LEARNING

In this example, looks like kernel version 2.6.2 makes sound to do not work using
a ipw2100 wi-fi chipset.

Concluding, the data gathered by the Actors can be used to help determine strange
beheviours when certain hardware/software circunstances are presented.

34

10 APPENDIX C - PROOF OF CONCEPTS

10 Appendix C - Proof of Concepts
In http://rapisardi.org/download/topper/ there’re different Proof of Concepts, in video.

http://rapisardi.org/download/topper/discovery.htm shows a possible way to gather
Data.

http://rapisardi.org/download/topper/feed.htm shows how to introduce Data into
Topper.

http://rapisardi.org/download/topper/consult.htm shows a possible way to gather
information from Topper.

35

11 CHANGELOG

11 Changelog
11/07/2005:

• Initial Version.

11/20/2005:

• Added data structure.

• More details about data gathering.

• More details in the Scope.

• Modified way of treating collected data.

11/21/2005:

• Fixed some typos.

11/27/2005:

• Replaced “module” for “kmodule” in fact name to avoid conflicts.

12/06/2005:

• Updated data structure example.

• Added Topper’s predefined methods.

• Updated collected data example.

• Merged previous “Topper” subsection into “Interaction with Topper” section.

• Added “Free Queries” subsections.

• “Facts” Section removed.

• Added “Upper Scope” and “Bottom Scope”.

• Fixed fact name “distro” for “distribution”, as implemented.

• Improved “Data Gathering” Section.

01/30/2006:

• Added CPU information to the data structure.

• Updated data structure chart.

• Move Data Cleansing to 2.4.

• Data Processing now 2.5.

• Added Data Cleansing subsubsection.

• Added Topscanner data gathering process.

36

11 CHANGELOG

01/31/2006:

• Changed orientation of Data Structure chart.

02/02/2006:

• Changed example of Data Cleansing.

• Be more precise with “highest quality of data”.

02/06/2006:

• Add CPU info support.

• Add CPU related methods.

02/12/2006:

• Add Class info support to PCI data.

02/27/2006:

• Order feature list alphabetically.

• New features: pcmcia, cardbus, serial-multiport, display-x, display-dri, display-
3party, display-3d, display-xrandr-resize, display-xrandr-rotate, digitizer-pen,
gameport, scsi, ide, ide-dma, ide-pata, ide-sata, floppy, raid, mass-storage, multimedia-
video, multimedia-audio, multimedia-audio-hda, multimedia-audio-mic, multimedia-
audio-midi, networking-eth, networking-atm, networking-tr, networking-isdn, networking-
fddi, wifi-firmware, wifi-80211ab, wifi-80211g, wifi-managed, wifi-adhoc, wifi-
master, wifi-monitor, wifi-wep, usb, usb2, irda.

• Change feature names: display instead of video, wifi instead of wi-fi, multimedia-
audio* instead of audio.

• Remove accel, audio, network and webcam features (replaced by other ones).

• Better formatting of this Changelog.

• Add Cherrytopper to the Mode of Operation diagram.

• Fix Subsection types in Section 4, Topper Uses.

• Add Cherrytopper subsection in Topper Uses.

37

